
Advanced Architectures

 IEEE Floating Point Unit

FEATURES
● Fully Synthesizable RTL - Verilog ● C models available

● User Selectable Precision
 Half precision
 Single precision
 Double precision
 Extended precision

● Fully Synchronous pipelines
 Single stage pipeline
 Three stage pipeline

● IEEE 754 fast mode compliant ● Full enhanced IEEE 754 Compliance Suite

● Supports all IEEE rounding modes ● OPTIONS
 Sub-modules can be supplied individually
 Any other pipe depth ● Extensible to run complex Math Functions

 Addition of sequencer and ROM allows
 trigonometry and other complex functions

© 2012 Advanced Architectures. All rights reserved 1 of 6 DATASHEET 09/25/12

Block Diagram

LEFT OPERAND

FLAGS
DECODE

CONTROL & STATUS

DIVIDE, REMAINDER
SQUARE ROOT

MULTIPLY
PIPE

ADD/SUBTRACT
PIPE

CONVERSION
PIPE

RIGHT OPERAND

OPERATION

CONTROL STATUS

RESULT

A2F3

Advanced Architectures

 IEEE Floating Point Unit

OVERVIEW

The A2F is a fully synthesizable module implemented in Verilog RTL. It is a co-processor unit
providing floating-point computation compliant with the ANSI/IEEE Std 754-1985, IEEE
Standard for Binary Floating-Point Arithmetic (IEEE Standard). It is designed to provide high
performance floating-point computation while minimizing die size and power. Pipelined,
single-cycle throughput operation is available for all operations except Divide, Remainder
and Square Root operations.

The Multiply and Add/Subtract Pipes maybe optionally be replaced with a full Fused-
Multiply-Add Pipe that provides improved precision for complex operations.

The A2F implements most of the formats and operations specified in the IEEE 754 standard
directly in its hardware pipelines. The following operations are not supported directly by
the A2F, but can be supported with software support:

• Denormal numbers
• Underflow to denormal numbers
• Full NaN support
• BCD conversions

Control Register bits determine how the A2F treats denormals and NaN operands, and
underflow conditions. In Fast Mode, input denormal operands are treated as equivalent to
positive zero. When an arithmetic operation generates an underflow result, the A2F returns
a zero instead (flush-to-zero mode). When an arithmetic instruction generates a NaN
operand, the default NaN value is always generated. The A2F does not propagate the lower
mantissa bits of NaNs. In Compliance Mode, the A2F will generate a software trap when it
encounters a denormal input, generates an underflow value, or needs to generate a NaN
result. This allows support software to complete the trapped operation in a way that is fully
compliant with the IEEE standard.

Primary Functions Secondary Functions Conversion Functions

Add Divide Integer to Float

Subtract Remainder Float to Integer

Compare Square Root Round to Integer

Multiply Modulus (Java) Round to Nearest

Change Sign Minimum Round Up

Absolute Value Maximum Round Down

Absolute Difference Clip to Magnitude Round toward Zero

Fused-Multiply-Add

© 2012 Advanced Architectures. All rights reserved 2 of 6 DATASHEET 09/25/12

A2F3

Advanced Architectures

 IEEE Floating Point Unit

SIGNAL I/O SIZE DESCRIPTION

CLK I 1 System Clock

RESET I 1 System Reset – configurable active level and synchronization

FP_LEFT_OPERAND I VAR. Left hand operand to FP binary operations

FP_RIGHT_OPERAND I VAR. Right hand operand to FP binary operations, operand for unary operations.

FP_OPCODE I 6 Floating Point operation code. Ignored with either FP_STALL or FP_BUSY is asserted.

FP_STALL I 1 Floating Point pipeline stall. When asserted, A2F stalls its internal pipeline stalls and ignores

FP_OPCODE.

FP_RESULT_VALID O 1 Floating Point result is valid

FP_CC_VALID O 1 Floating Point compare result is valid

FP_RESULT O VAR. Floating Point operation result. Valid when FP_RESULT_VALID is asserted and FP_CC_VALID is not

asserted. Invalid and indeterminate otherwise.

FP_IF O 1 Invalid Operation Flag. Indicates that the requested operation is invalid for the input operands.

Valid when FP_RESULT_VALID is asserted.

FP_ZF O 1 Divide by Zero Flag. Indicates that the instruction attempted a divide by 0. Valid when

FP_RESULT_VALID is asserted.

FP_OF O 1 Overflow Flag. Indicates that the result exceeds the exponent range of the destination format.

Valid when FP_RESULT_VALID is asserted.

FP_UF O 1 Underflow Flag. Indicates that the result is inexact and too small to be represented in the

destination format. Valid when FP_RESULT_VALID is asserted.

FP_XF O 1 Inexact Flag. Indicates that the rounded FP_RESULT is not exact. Valid when FP_RESULT_VALID

is asserted.

FP_DF O 1 Denormal Flag. Indicates that at least one of the input operands was a denormal number. Valid

when FP_RESULT_VALID is asserted.

FP_UO O 1 Compare result: unordered. Indicates that at least one of the input operands was a NAN. Valid

when FP_CC_VALID is asserted.

FP_GT O 1 Compare result: greater than. Indicates that neither operand was a NAN, and the LEFT operand

was greater than the RIGHT operand. Valid when FP_CC_VALID is asserted.

FP_LT O 1 Compare result: less than. Indicates that neither operand was a NAN, the LEFT operand was

less than the RIGHT operand. Valid when FP_CC_VALID is asserted.

FP_BUSY O 1 Floating Point busy status. Asserted when A2F has internally stalled its pipeline during the

execution of an instruction. FP_OPCODE is ignored when FP_BUSY is asserted.

FP_EXCEPTION O 1 Floating Point exception flag. Asserted when any of the exception flags in the Status Register is

unmasked by the exception mask in the Control Register.

FP_LOAD_CSR I 1 Load enable for Control/Status Register. When asserted, FP_CSR_DATA_IN is loaded into the

Control/Status register on the rising edge of CLK. FP_LOAD_CSR is not affected by FP_STALL or

FP_BUSY. When FP_LOAD_CSR is asserted on the same cycle as a valid FP_OPCODE, then the

data in FP_CSR_DATA_IN determines the rounding and precision modes of the instruction, and

the modes in the current Control Register are ignored.

FP_CSR_DATA_IN I 32 Control/Status Register load data.

FP_CSR_DATA_OUT O 32 Control/Status Register contents.

The A2F module operates on a single or multi-stage execution pipeline. Figure 2 shows the

© 2012 Advanced Architectures. All rights reserved 3 of 6 DATASHEET 09/25/12

A2F3

Advanced Architectures

 IEEE Floating Point Unit

timing relationships between the main A2F interface signals during the execution of a single
instruction. In cycle 0, an instruction is issued to A2F by asserting an opcode and operands
to the A2F inputs. The inputs are registered on the rising edge of CLK and the execution
pipeline stages begin. The instruction completes “Pipe-Depth” cycles later when the A2F
module asserts FP_RESULT_VALID, drives the data result to FP_RESULT, and drives the flag
results to the corresponding flag outputs (e.g. FP_XF). For compare instructions, A2F also
asserts FP_CC_VALID, signifying that the compare flags are valid (e.g. FP_LT). On the rising
edge of CLK at the end of the same cycle, the Status Register is updated with the results of
the completing instruction. The updated Status Register appears on FP_CSR_DATA_OUT in
cycle (“Pipe-Depth+1). If the instruction sets an unmasked exception flag, then
FP_EXCEPTION is also asserted in cycle (“Pipe-Depth+1).

For certain instructions, the A2F must stall the pipeline in order to complete a lengthy
computation. When required, A2F stalls the second stage of the pipeline by asserting the
output signal FP_BUSY. When the computation is complete, FP_BUSY is de-asserted and the
pipeline continues with stage 2 as shown in Figure 3 below. When FP_BUSY is asserted,
A2F ignores the FP_OPCODE input and does not start any new instructions.

© 2012 Advanced Architectures. All rights reserved 4 of 6 DATASHEET 09/25/12

Basic Pipeline Operation

FP_CLOCK

FP_OPCODE FNOPFNOP

FP_xxx_OPERAND

FP_RESULT

FP_FLAGS

FP_RESULT_VALI
D

FP_CSR_DATA_OU
T

FP_EXCEPTION

FP_CC_VALID

PIPE DEPTH = 3

A2F3

Advanced Architectures

 IEEE Floating Point Unit

The A2F pipeline can be stalled by either external or internal conditions. External logic can
force A2F to stall its pipeline by asserting FP_STALL at any clock boundary. Internally, A2F
stalls its pipeline when performing lengthy divide loop computations by asserting the
output signal FP_BUSY. The two signals have the same effect on the A2F pipeline. When
either signal is asserted, A2F ignores the FP_OPCODE input and does not start new
instructions. Instructions already in progress are suspended at their current execution
stage until the stall is removed. However, asserting FP_STALL does stop the divide
hardware iterations that cause FP_BUSY to be asserted. If the iterations complete while
FP_STALL is still asserted, then the A2F maintains the results and continues the external
stall.

© 2012 Advanced Architectures. All rights reserved 5 of 6 DATASHEET 09/25/12

Pipeline Stall for FP_BUSY

FP_CLOCK

FP_OPCODE

FP_xxx_OPERAND

FP_RESULT

FP_FLAGS

FP_RESULT_VALI
D

FP_CSR_DATA_OU
T

FP_EXCEPTION

0 1 3 4

FP_CC_VALID

FP_BUSY

3 422
STALL

2
STALL

A2F3

Advanced Architectures

 IEEE Floating Point Unit

© 2012 Advanced Architectures. All rights reserved 6 of 6 DATASHEET 09/25/12

Pipeline Stall for FP_STALL

FP_CLOCK

FP_OPCODE

4FP_xxx_OPERAND

4

4FP_RESULT

4FP_FLAGS

FP_RESULT_VALI
D

1FP_CSR_DATA_OU
T

FP_EXCEPTION

FP_CC_VALID

1 2 3

1 2 3

1 2 3

1 2 3

2 3 4

5

5

5

5

5

FP_STALL

Ignored at clock edge

CSR update does not stall

RESULT does not stall

A2F3

